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A new Bravais-lattice determination algorithm is introduced herein. For error-

stable Bravais-lattice determination, Andrews & Bernstein [Acta Cryst. (1988),

A44, 1009–1018] proposed the use of operations to search for nearly Buerger-

reduced cells. Although these operations play an essential role in their method,

they increase the computation time, in particular when lattice parameters

obtained in (powder) auto-indexing are supposed to contain large errors. The

new algorithm requires only several permutation matrices in addition to the

operations that are necessary when the lattice parameters have exact values. As

a result, the computational efficiency of error-stable Bravais-lattice determina-

tion is improved considerably. Furthermore, the new method is proved to be

error stable under a very general assumption. The detailed algorithms and the

set of matrices sufficient for error-stable determination are presented.

1. Introduction

In Bravais-lattice determination, using the parameter of a

primitive cell, its corresponding Bravais type and the para-

meter of the conventional cell are determined. This process is

required, for example, after auto-indexing of (powder)

diffraction patterns. In general, a set of lattice parameters

a; b; c; �; �; � or a metric tensor (3-by-3 positive definite

symmetric matrix) is used as the parameter of a three-

dimensional lattice.

When a metric tensor of a lattice is Niggli reduced and has

an exact value, it is known that the metric tensor belongs to a

union of several linear spaces given by 44 lattice characters

(Hahn, 1983; Niggli, 1928). However, if the metric tensor

contains an observation error, as shown by Andrews &

Bernstein (1988), sometimes it is not near the union set.

Studies on Bravais-lattice determination under experi-

mental uncertainties have been conducted by Clegg (1981), Le

Page (1982), Zimmermann & Burzlaff (1985) and Andrews &

Bernstein (1988). Determination in the case of very small

errors, such as computational rounding errors, has been

discussed by Buerger (1957), Gruber (1973), Křivý & Gruber

(1976), Zuo et al. (1995) and Grosse-Kunstleve et al. (2004).

Zimmermann & Burzlaff adopted the Delaunay reduction

(Delaunay, 1933) because the number of lattice characters for

the Delaunay reduction is 30, which is less than the 44

required for the Buerger reduction. Andrews & Bernstein

(1988) assumed the use of the Buerger reduction and

proposed the use of operations that provide nearly Buerger-

reduced cells, in addition to the matrices associated with the 44

lattice characters. The former operations are computed by

multiplying the 25 Gruber operations recursively (Gruber,

1973). However, they did not clarify how many operations are

required in the worst case.

In Appendix B in the supplementary material,1 it is

explained that 168 operations are required to give all the

nearly Buerger-reduced cells in the worst case, which can

occur even if the errors in the parameters are as small as

rounding errors. As a result, more than a thousand operations

are generated by multiplying these operations and the

matrices. This is very time consuming for repeated execution

after auto-indexing, in particular when many powder indexing

solutions are found. Moreover, lattice parameters obtained by

powder indexing usually contain large observation errors

because of zero-point shift. This further affects the computa-

tion time.

The most effective way to reduce the time is to decrease the

number of matrices used in error-stable determination. For

this purpose, our algorithm applies the Minkowski reduction

to cells with no centrings (primitive), and the Delaunay

reduction to face-centred, body-centred, rhombohedral and

base-centred cells.

For primitive monoclinic, body-centred and face-centred

orthorhombic cells, it is confirmed by Theorems 1 and 2 that

only three permutation matrices are sufficient for error-stable

determination as long as the errors in the metric tensors are

not large enough for the following assumption to become

false:

1 Appendices A, B, C and D are available as supplementary material from the
IUCr electronic archives (Reference: SC5050). Services for accessing these
data are described at the back of the journal.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5050&bbid=BB19
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767312024579&domain=pdf&date_stamp=2012-07-20


(A) If p satisfies p � c1jl1j
2
þ . . .þ cmjlmj

2 theoretically for

some ci �
1
2 and lattice vectors li 6¼ 0 of a crystal lattice L (or

its reciprocal lattice L�), the observed value pobs is also posi-

tive.

In simple terms, (A) assumes that jlj2 and 1
2 jlj

2 are never

observed as a negative value for any 0 6¼ l 2 L or L�.

Although (A) is considered to be true in normal experimental

data, overestimation of errors may sometimes make (A) false

in practical cases. This will be discussed in x5.4.

For rhombohedral and base-centred monoclinic cells,

similar assertions are proved in Theorems 3 and 4. Further-

more, in Propositions 1 and 2, it is confirmed that only 16 and

21 matrices are required for these cells, respectively, if the

nearest projection is prioritized, as in the case of Andrews &

Bernstein (1988).

The determination of higher symmetries, including cubic,

hexagonal, tetragonal and base-centred orthogonal cells, is

almost straightforward after the type of centring is deter-

mined. The procedures for these symmetries are summarized

in x5.3.

In x5.4, the advantages of the new algorithm are explained

from a theoretical point of view. In particular, in the best case,

the new method is more than 120 times faster than the existing

method.

The new algorithm is implemented in the new powder auto-

indexing software Conograph (Oishi-Tomiyasu & Kamiyama,

2011). x6 presents the results of Bravais-lattice determination

using Conograph. Distribution of the Bravais-lattice deter-

mination module as a stand-alone program has not been

planned thus far.

The Minkowski and Delaunay reductions are defined in x3.

The definitions of Niggli and Buerger reductions are included

in Appendix A. In x5.1, the linear subspaces to which metric

tensors of a fixed centring type belong are presented, with

explanations in x5.2. All the proofs of the theorems and

propositions are provided in Appendices C and D, respec-

tively.

Finally, we find that three operations among the 25 Gruber

operations are redundant for determining the Niggli-reduced

cells from the Buerger-reduced cells. This is mentioned in the

last paragraph of Appendix B.

2. An inner product defined on the space of symmetric
matrices

On the space SymNðRÞ consisting of N-by-N symmetric

matrices, an inner product is defined by

hS;Ti :¼ TraceðSTÞ ¼
PN
i¼1

PN
j¼1

sijtij: ð1Þ

For any S 2 SymNðRÞ, T 2 SymMðRÞ and M-by-N real-valued

matrix g, the following equations are obtained from

TraceðABÞ ¼ TraceðBAÞ:

if N ¼ M; then hS;Ti ¼ hT; Si; ð2Þ

hgSgT;Ti ¼ hS; gTTgi: ð3Þ

These inner products and equations are used in definitions and

proofs.

3. Several facts in reduction theory

A three-dimensional lattice L with lattice parameters a, b, c, �,

� and � is associated with a 3-by-3 symmetric matrix having

the following entries:

s11 ¼ a2; s22 ¼ b2; s33 ¼ c2;
s12 ¼ ab cos �; s13 ¼ ac cos�; s23 ¼ bc cos�:

ð4Þ

S is called a metric tensor of L and is also identified with a

quadratic form of L.

As in the paper by Grosse-Kunstleve et al. (2004), the

elements of the general linear group GLð3;ZÞ are called

change-of-basis matrices because they correspond to basis

transforms of a lattice. The metric tensor S of L is not uniquely

determined, because gSgT is also a metric tensor of L for any

change-of-basis matrix g. The reduction theory is necessary to

resolve this ambiguity in the choice of S.

The Niggli and Buerger reductions, which are commonly

used in crystallography, originated from the paper by Eisen-

stein (1851). Later, Minkowski established reduction theory

for lattices of general dimension (Minkowski, 1905). There-

fore, the definitions of these three reductions are very similar.

The Delaunay reduction [also known as the Selling reduction

(Selling, 1874)] is comparatively different from these reduc-

tions.

Below the definitions of the Minkowski and Delaunay

reductions are provided in narrow and broad senses. In

order to discuss Bravais-lattice determination methods, the

Minkowski and Delaunay reductions in a broad sense are

sometimes more convenient than those in a narrow sense

because their corresponding domain is invariant by permuta-

tion matrices.

For any symmetry matrix S and change-of-basis matrix g,

gSgT is denoted by S½g�. The N-by-N identity matrix is denoted

by IN.

Minkowski-reduced domain. A metric tensor S of a lattice is

Minkowski reduced if and only if it belongs to Dmin:

Dmin : ¼ fðsijÞ1�i;j�3 2 Sym3
ðRÞ : s11 � s22 � s33;

2js12j; 2js13j � s11; 2js23j � s22;

2js13 þ s23j � s11 þ s22 þ 2s12;

2js13 � s23j � s11 þ s22 � 2s12g: ð5Þ

Delaunay-reduced domain. For any 3-by-3 symmetric

matrix S :¼ ðsijÞ1�i�j�3, let ~SS :¼ ð~ssijÞ1�i;j�4 be the 4-by-4

symmetric matrix whose entries are given by

s11 s12 s13 �
P3

j¼1 s1j

s21 s22 s23 �
P3

j¼1 s2j

s31 s32 s33 �
P3

j¼1 s3j

�
P3

i¼1 si1 �
P3

i¼1 si2 �
P3

i¼1 si3

P3
i¼1

P3
j¼1 sij

0
BBB@

1
CCCA: ð6Þ
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This 4-by-4 symmetric matrix is frequently used to represent

the Delaunay reduction cells, instead of S. The following

relation formulas hold between S and ~SS:

~SS ¼ hdelShT
del; ð7Þ

S ¼ h0
~SShT

0 ; ð8Þ

hdel :¼

1 0 0

0 1 0

0 0 1

�1 �1 �1

0
BB@

1
CCA; ð9Þ

h0 :¼
1 0 0 0

0 1 0 0

0 0 1 0

0
@

1
A: ð10Þ

If ~SS 2 Sym4ðRÞ corresponds to S 2 Sym3ðRÞ as equation (7), ~SS
belongs to the following subspace of Sym4ðRÞ:

Vdel :¼ ð~ssijÞ1�i;j�4 2 Sym4ðRÞ :
P4

i¼1

P4

j¼1

~ssij ¼ 0

( )
: ð11Þ

S (or corresponding ~SS) is said to be Delaunay reduced if and

only if ~SS belongs to Ddel:

Ddel : ¼

�
ð~ssijÞ1�i;j�4 2 Vdel : ~ss11 � ~ss22 � ~ss33 � ~ss44;

~ssij � 0 ð1 � i< j � 4Þ

�
: ð12Þ

Minkowski-reduced domain in a broad sense. A metric

tensor is Minkowski reduced in a broad sense if and only if it is

an element of the following set:

~DDmin : ¼ S 2 Sym3
�0ðRÞ : hS; I3i ¼ min

g2GLð3;ZÞ
hS½g�; I3i

� �
¼ fðsijÞ1�i;j�3 2 Sym3

ðRÞ : 2jsijj � minfsii; sjjg

and 2jsik 	 sjkj � sii þ sjj 	 2sij for any

1 � i; j; k � 3 that differ from each otherg: ð13Þ

It is well known in reduction theory that ~DDmin contains Dmin,

and any S 2 ~DDmin is transformed into an element of Dmin by

simply sorting its diagonal entries in ascending order using a

permutation matrix.

Delaunay-reduced domain in a broad sense. A metric

tensor is Delaunay reduced in a broad sense if and only if it is

an element of the following set:

~DDdel : ¼ ~SS 2 Vdel : h ~SS; I4i ¼ min
g2GLð3;ZÞ

h ~SS½g�; I4i

� �
¼ fð~ssijÞ1�i;j�4 2 Vdel : ~ssij � 0 ð1 � i< j � 4Þg; ð14Þ

~SS½g� :¼ ðhdelgh0Þ
~SSðhdelgh0Þ

T : ð15Þ

Clearly, Ddel is contained in ~DDdel.

From equations (3) and (7), the following equation is

obtained:

~DDdel ¼ S 2 Sym3
ðRÞ : hS;A3i ¼ min

g2GLð3;ZÞ
hS½g�;A3i

� �
; ð16Þ

A3 :¼ hT
delI4hdel ¼

2 1 1

1 2 1

1 1 2

0
@

1
A: ð17Þ

Any ~SS 2 ~DDdel is transformed into an element of Ddel by
~SS 7! ~SS½h0ghdel�, using the 4-by-4 permutation matrix g that

sorts the diagonal entries of ~SS in ascending order.

For any subset D 
 Sym3ðRÞ and a matrix g, a new domain

D½g� is defined as fgSgT : S 2 Dg. The stabilizer subgroups of
~DDmin, ~DDdel, i.e. the sets of all g 2 GLð3;ZÞ with ~DDmin½g� ¼ ~DDmin

and ~DDsel½g� ¼ ~DDsel, coincide with the following groups,

respectively:

StðI3Þ :¼ fg 2 GLð3;ZÞ : gTI3g ¼ I3g; ð18Þ

StðA3Þ : ¼ fg 2 GLð3;ZÞ : gTA3g ¼ A3g

¼ fh0ghdel : g is a 4-by-4 permutation matrixg:

ð19Þ

The elements of StðI3Þ and StðA3Þ are listed in Tables 1 and 2.

4. Application of Minkowski reduction to monoclinic
(P) cells

A monoclinic (P) lattice corresponds to a metric tensor

ðsijÞ1�i;j�3 contained in Vmono;p, a union of linear subspaces of

Sym3ðRÞ:

Vmono;p :¼ Vmono;p;a [ Vmono;p;b [ Vmono;p;c; ð20Þ

Vmono;p;a :¼ fðsijÞ1�i;j�3 2 Sym3
ðRÞ : s12 ¼ s13 ¼ 0g; ð21Þ

Vmono;p;b :¼ fðsijÞ1�i;j�3 2 Sym3
ðRÞ : s12 ¼ s23 ¼ 0g; ð22Þ

Vmono;p;c :¼ fðsijÞ1�i;j�3 2 Sym3ðRÞ : s13 ¼ s23 ¼ 0g: ð23Þ

Any Buerger-reduced metric tensor belongs to Vmono;p if it has

precisely monoclinic (P) symmetry. However, if the observed

metric tensor Sobs and the true metric tensor S do not become

Buerger reduced with regard to the same basis, Sobs may not be

close to Vmono;p, even if Sobs is Buerger reduced. Therefore,

operations to search for nearly Buerger-reduced cells are

necessary for error-stable determination.

However, if nearly monoclinic (P) cells are searched for

instead of nearly Buerger-reduced cells, according to Theorem

1, such operations are not required by applying the Minkowski

reduction.

Theorem 1. Let Sobs be an observed metric tensor of a lattice

with monoclinic (P) symmetry, and let S be the true metric

tensor corresponding to the same lattice basis as Sobs. Under

assumption (A), if Sobs is Minkowski reduced in a broad sense,

S belongs to Vmono;p.

The proof is found in Appendix C.

As a result, it is proved by Theorem 1 that the following

algorithm is error stable because all the candidates permissible
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by assumption (A) are checked in it. The three matrices used

in Table 3 correspond to the projection of Sobs on each

subspace, Vmono;p;a, Vmono;p;b and Vmono;p;c, respectively.

5. Application of Delaunay reduction to cases other
than no-centring (primitive) type

While the Minkowski reduction is more suitable than the

Buerger and Delaunay reductions for the determination of

monoclinic (P) cells, the Delaunay reduction is more suitable

than the Minkowski and Buerger reductions for face-centred,

body-centred, rhombohedral and base-centred cells. This is

because metric tensors corresponding to the latter Bravais

types are basically contained in the interior of the Delaunay-

reduced domain [equation (14)], while they belong to the

boundary of the Minkowski-reduced domain [equation (13)]

and Buerger-reduced domain [equation (61), see Appendix

A].

5.1. Subspaces corresponding to lattice characters for
Delaunay reduction

Here we shall define the subspaces of Sym3ðRÞ in which the

face-centred, body-centred, rhombohedral and base-centred

lattices are supposed to be contained. Every subspace corre-

sponds to a lattice character for the Delaunay reduction,

except for the case of body-centred cells. Because the reci-

procal lattice of a body-centred lattice has face-centred

symmetry, a lattice character for face-centred cells is also

applied to body-centred cells; this reduces the number of

matrices used in the algorithm in x5.2.2; furthermore, it makes

the determination of body-centred cells more error stable

because metric tensors corresponding to a face-centred lattice

research papers
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Table 2
Elements of the stabilizer subgroup StðA3Þ in GLð3;ZÞ.

	I3
	

0 0 1

1 0 0

0 1 0

0
@

1
A

	

0 1 0

0 0 1

1 0 0

0
@

1
A

	

1 0 0

0 0 1

0 1 0

0
@

1
A 	

0 0 1

0 1 0

1 0 0

0
@

1
A

	

0 1 0

1 0 0

0 0 1

0
@

1
A

	

1 0 0

0 1 0

�1 �1 �1

0
@

1
A 	

1 0 0

0 0 1

�1 �1 �1

0
@

1
A

	

0 1 0

0 0 1

�1 �1 �1

0
@

1
A

	

0 1 0

1 0 0

�1 �1 �1

0
@

1
A 	

0 0 1

1 0 0

�1 �1 �1

0
@

1
A

	

0 0 1

0 1 0

�1 �1 �1

0
@

1
A

	

1 0 0

�1 �1 �1

0 1 0

0
@

1
A 	

1 0 0

�1 �1 �1

0 0 1

0
@

1
A

	

0 1 0

�1 �1 �1

0 0 1

0
@

1
A

	

0 1 0

�1 �1 �1

1 0 0

0
@

1
A 	

0 0 1

�1 �1 �1

1 0 0

0
@

1
A

	

0 0 1

�1 �1 �1

0 1 0

0
@

1
A

	

�1 �1 �1

1 0 0

0 1 0

0
@

1
A 	

�1 �1 �1

1 0 0

0 0 1

0
@

1
A

	

�1 �1 �1

0 1 0

0 0 1

0
@

1
A

	

�1 �1 �1

0 1 0

1 0 0

0
@

1
A 	

�1 �1 �1

0 0 1

1 0 0

0
@

1
A 	

�1 �1 �1

0 0 1

0 1 0

0
@

1
A

Table 3
Algorithm for monoclinic (P) cells.

(Input) Sobs: Buerger-reduced metric tensor,†
"> 0: threshold,
distðS;TÞ: arbitrary distance function with arguments

S;T 2 Sym3ðRÞ.
(Output) A: array of pairs of a change-of-basis matrix g and

S 2 Vmono;p;b satisfying distðS; Sobs½g�Þ<".
1: Prepare the array CP of size Imax :¼ 3:

CP :¼ I3;
1 0 0

0 0 1

0 1 0

0
@

1
A; 0 1 0

1 0 0

0 0 1

0
@

1
A

8<
:

9=
;:

2: for i = 1 to Imax do
3: Compute Snew :¼ CP½i�S

obsCP½i�
T and

4: Set

S :¼
s11 0 s13

0 s22 0

s13 0 s33

0
@

1
A;

where sij is the ði; jÞ entry of Snew.
5: if distðSnew; SÞ<", insert ðCP½i�; SÞ in A.
6: end for

† Here it may be assumed that Sobs is Minkowski reduced in a broad sense.

Table 1
Elements of the stabilizer subgroup StðI3Þ in GLð3;ZÞ.

	1 0 0

0 	1 0

0 0 	1

0
@

1
A 	1 0 0

0 0 	1

0 	1 0

0
@

1
A 0 	1 0

	1 0 0

0 0 	1

0
@

1
A

0 0 	1

	1 0 0

0 	1 0

0
@

1
A 0 	1 0

0 0 	1

	1 0 0

0
@

1
A 0 0 	1

0 	1 0

	1 0 0

0
@

1
A



are never close to the boundary of the Delaunay-reduced

domain [equation (14)].

5.1.1. Subspaces for face-centred cells. A face-centred cell

in real space has a metric tensor belonging to

VF :¼ ðsijÞ1�i;j�3 : s12 ¼ s13 ¼ s23 ¼ 0
� �

: ð24Þ

Hence, its primitive cell corresponds to the following metric

tensor:

hF

a 0 0

0 b 0

0 0 c

0
@

1
AhT

F ; hF :¼
1

2

1 1 0

1 �1 0

�1 0 1

0
@

1
A: ð25Þ

As indicated by the lattice character for the Delaunay

reduction, any Delaunay-reduced metric tensor ~SS of a face-

centred cell is an element of ~VVF defined by

~VVF :¼
[

1�k1<k2�3

~VVF;k1;k2
; ð26Þ

~VVF;k1;k2
: ¼ fð~ssijÞ1�i<j�4 2 Vdel : ~ssk1l1

¼ ~ssk1l2
¼ ~ssk2l1

¼ ~ssk2 l2

for 1 � l1 < l2 � 4 that differ from k1; k2g:

ð27Þ

5.1.2. Subspaces for body-centred cells. If a conventional

cell has a body-centred symmetry, the Delaunay-reduced

metric tensor ~SS :¼ ð~ssijÞ1�i;j�4 of its primitive cell in reciprocal

space belongs to ~VVF defined by equation (26).

5.1.3. Subspaces for rhombohedral cells. If a lattice has

rhombohedral symmetry, regardless of whether it is in real or

reciprocal space, its metric tensor S is an element of VR

defined by

VR :¼ ðsijÞ1�i;j�3 : s11 ¼ s22 ¼ s33; s12 ¼ s13 ¼ s23

� �
: ð28Þ

The elements of VR are positive definite but not Buerger

reduced when � 1
2 a< d<� 1

3 a or 1
2 a< d< a. On the other

hand, the following linear space ~VVR contains every Delaunay-

reduced metric tensor of a rhombohedral lattice:

~VVR :¼
[

1�k1<k2�4

1�l1�4; l1 6¼k1 ;k2

~VVþR;k1;k2;l1
[

[
1�l1<l2<l3�4

~VV�R;l1;l2;l3 ; ð29Þ

~VVþR;k1;k2;l1
: ¼

�
ð~ssijÞ1�i;j�4 2 Vdel :

~ssk1l2
¼ ~ssk2l1

¼ 0; ~ssk1k2
¼ ~ssk1 l1

¼ ~ssk2l2

for 1 � l2 � 4 that differs from k1; k2; l1

�
;

ð30Þ

~VV�R;l1;l2;l3 : ¼
�
ð~ssijÞ1�i;j�4 2 Vdel :

~ssl1l1
¼ ~ssl2l2

¼ ~ssl3l3
; ~ssl1l2

¼ ~ssl1l3
¼ ~ssl2l3

�
: ð31Þ

5.1.4. Subspaces for base-centred cells. A base-centred cell

has a metric tensor belonging to VB:

VB :¼
a 0 d

0 b 0

d 0 c

0
@

1
A : a; b; c; d 2 R

8<
:

9=
;: ð32Þ

The following linear space ~VVB contains every Delaunay-

reduced metric tensor of a base-centred lattice:

~VVB : ¼
[

1�k1<k2�4

~VVð1ÞB;k1;k2

[
[

1�k1<k2�3

~VVð2ÞB;k1;k2
[

[
1�k1;k2�4

~VVð3ÞB;k1;k2
; ð33Þ

~VVð1ÞB;k1;k2
: ¼ fð~ssijÞ1�i;j�4 2 Vdel : ~ssk1l ¼ ~ssk2l

for any 1 � l � 4; l 6¼ k1; k2g; ð34Þ

~VVð2ÞB;k1;k2
: ¼ fð~ssijÞ1�i;j�4 2 Vdel : ~ssk1l ¼ ~ssk24; ~ssk14 ¼ ~ssk2 l

for 1 � l � 3 that differ from k1; k2g; ð35Þ

~VV ð3ÞB;k1;k2
: ¼ fð~ssijÞ1�i;j�4 2 Vdel : ~ssk1k2

¼ 0; ~ssk1l1
¼ ~ssk1l2

for 1 � l1 < l2 � 4 that differ from k1; k2g:

ð36Þ

This is seen from the following equations:

hdelhB

a 0 d

0 b 0

d 0 c

0
B@

1
CAðhdelhBÞ

T

¼

aþ b

4

a� b

4

d

2
�

aþ d

2
a� b

4

aþ b

4

d

2
�

aþ d

2
d

2

d

2
c �c� d

�
aþ d

2
�

aþ d

2
�c� d aþ cþ 2d

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð37Þ

hdelT
ð2Þ
B hB

a 0 d

0 b 0

d 0 c

0
B@

1
CAðhdelT

ð2Þ
B hBÞ

T

¼

aþ b

4

�aþ b

4
�

aþ bþ 2d

4

a� bþ 2d

4
�aþ b

4

aþ b

4

a� bþ 2d

4
�

aþ bþ 2d

4

�
aþ bþ 2d

4

a� bþ 2d

4

aþ b

4
þ cþ d

�aþ b

4
� c� d

a� bþ 2d

4
�

aþ bþ 2d

4

�aþ b

4
� c� d

aþ b

4
þ cþ d

0
BBBBBBBBB@

1
CCCCCCCCCA
;

ð38Þ
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hdelT
ð3Þ
B hB

a 0 d

0 b 0

d 0 c

0
B@

1
CAðhdelT

ð3Þ
B hBÞ

T

¼

aþ b

4

d

2
�

b

2

�aþ b� 2d

4
d

2
c 0 �c�

d

2

�
b

2
0 b �

b

2
�aþ b� 2d

4
�c�

d

2
�

b

2

aþ b

4
þ cþ d

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð39Þ

where

hB :¼

1
2

1
2 0

1
2 �

1
2 0

0 0 1

0
@

1
A; ð40Þ

T
ð2Þ
B :¼

�1 0 0

0 1 0

1 0 1

0
@

1
A; ð41Þ

T
ð3Þ
B :¼

�1 0 0

0 0 �1

1 �1 0

0
@

1
A: ð42Þ

5.2. Theorems and algorithms for lattice parameters
containing observation errors

5.2.1. Face-centred cells. For face-centred lattices, the

following theorem is obtained similarly to Theorem 1:

Theorem 2. Let ~SSobs be an observed metric tensor of a lattice

with face-centred symmetry, and let ~SS be the true metric tensor

with regard to the same basis as ~SSobs. Under assumption (A), if
~SSobs is Delaunay reduced in a broad sense, ~SS belongs to ~VVF

defined by equation (26).

~VVF is a union of three subspaces from equation (26). As a

result of Theorem 2, the algorithm in Table 4 is proved to be

error stable.

5.2.2. Body-centred cells. Except for the utilization of the

metric tensor of a reciprocal lattice, this case is almost the

same as the face-centred case. In particular, the algorithm in

Table 5 is error stable.

5.2.3. Rhombohedral cells. For rhombohedral cells, the

following theorem is obtained:

Theorem 3. Let ~SSobs be an observed metric tensor of a lattice

with rhombohedral symmetry, and let ~SS be the true metric

tensor with regard to the same basis as ~SSobs. Under assumption

(A), if ~SSobs is Delaunay reduced in a broad sense, ~SS belongs to

the following union of linear subspaces of Vdel:

~VVR [
[

g02StðA3Þ

~VV�R;1;2;3½g0t001� [
[

g02StðA3 Þ;
h¼t010 ;t001

~VV�R;1;2;3½g0TþR h�; ð43Þ

where TþR is defined by

research papers

530 R. Oishi-Tomiyasu � Rapid Bravais-lattice determination algorithm Acta Cryst. (2012). A68, 525–535

Table 4
Algorithm for face-centred cells.

Note that, in this algorithm, the diagonal entries of the output matrices in A
are not sorted.

(Input) Sobs: Delaunay-reduced metric tensor of a lattice in real space,
"> 0, distðS;TÞ: same as Table 3,

(Output) A: array of pairs of an integer matrix g with hFg 2 GLð3;ZÞ
and a diagonal matrix S with distðS; Sobs½g�Þ<".

1: Prepare the inverse of hF given by equation (25):

h�1
F :¼

1 1 0

1 �1 0

1 1 2

0
@

1
A;

2: Prepare the array CF of size Imax :¼ 3:

CF :¼ h�1
F ; h�1

F

1 0 0

0 0 1

0 1 0

0
@

1
A; h�1

F

0 1 0

0 0 1

1 0 0

0
@

1
A

8<
:

9=
;:

3: for i = 1 to Imax do
4: Compute Snew :¼ CF½i�S

obsCF½i�
T and

S :¼
s11 0 0

0 s22 0

0 0 s33

0
@

1
A;

where sij is the ði; jÞ entry of Snew.
5: if distðSnew; SÞ<", insert ðCF½i�; SÞ in A.
6: end for

Table 5
Algorithm for body-centred cells.

(Input) Sobs: metric tensor of a lattice in real space
such that ðSobsÞ

�1 is Delaunay reduced,
"> 0, distðS;TÞ: same as Table 3,

(Output) A: array of pairs of an integer matrix g with hIg 2 GLð3;ZÞ
and a diagonal matrix S with distðS; Sobs½g�Þ<".

1: Set the matrix h�1
I :

h�1
I :¼

1 1 �1

1 �1 0

0 0 1

0
@

1
A;

2: Prepare the array CI of size Imax :¼ 3:

CI :¼ h�1
I ; h�1

I

1 0 0

0 0 1

0 1 0

0
@

1
A; h�1

I

0 1 0

0 0 1

1 0 0

0
@

1
A

8<
:

9=
;:

3: for i = 1 to Imax do
4: Compute Snew :¼ CI ½i�S

obsCI ½i�
T and

S :¼
s11 0 0

0 s22 0

0 0 s33

0
@

1
A;

where sij is the ði; jÞ entry of Snew.
5: if distðSnew; SÞ<", insert ðCI ½i�; SÞ in A.
6: end for



TþR :¼
�1 0 0

0 1 0

1 0 �1

0
@

1
A; ð44Þ

and t001 and t010 are diagonal matrices defined by

ti1 i2i3
:¼

ð�1Þi1 0 0

0 ð�1Þi2 0

0 0 ð�1Þi3

0
@

1
A: ð45Þ

The domain [equation (43)] is decomposed into the unionS
g2CR

~VV�R;1;2;3½g
�1�, where CR is the set of the 64 matrices in

Table 6. However, from the following proposition, it may be

too prudent to use all the 64 matrices in order to search for

nearly rhombohedral cells.

Proposition 1. Suppose that for an arbitrarily chosen r> 0, a

distance on Sym3ðRÞ is provided by

dist ðsijÞ1�i;j�3; ðtijÞ1�i;j�3

� �
:¼
P3

i¼1

ðsii � tiiÞ
2
þ r

P
1�i< j�3

ðsij � tijÞ
2:

ð46Þ

In this case, the projection map PR : Sym3ðRÞ �!VR is

defined by

s11 s12 s13

s12 s22 s23

s13 s23 s33

0
B@

1
CA 7! 1

3

a d d

d a d

d d a

0
B@

1
CA;

a :¼
s11 þ s22 þ s33

3
; d :¼

s12 þ s13 þ s23

3
: ð47Þ

The distance of the displacement �RðSÞ :¼ distðS;PRðSÞÞ

caused by the projection satisfies the following inequalities for
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Table 6
Change-of-basis matrices to search for nearly rhombohedral cells.

The matrices are chosen so that ~VV�R;1;2;3½g
�1
1 � 6¼

~VV�R;1;2;3½g
�1
2 � holds for any g1 6¼ g2. Matrices in the first two rows of the table are contained in C0R.

1 0 0

0 1 0

0 0 1

0
@

1
A 1 0 0

0 1 0

�1 �1 �1

0
@

1
A 1 0 0

0 0 1

�1 �1 �1

0
@

1
A 1 0 0

0 0 �1

1 1 0

0
@

1
A 1 0 0

0 0 �1

0 �1 �1

0
@

1
A 1 0 0

0 �1 0

1 0 1

0
@

1
A 1 0 0

0 �1 0

0 �1 �1

0
@

1
A 1 0 0

1 1 1

1 1 0

0
@

1
A

1 0 0

1 1 1

1 0 1

0
@

1
A 0 1 0

0 0 1

�1 �1 �1

0
@

1
A 0 1 0

0 0 �1

1 1 0

0
@

1
A 0 1 0

0 0 �1

�1 0 �1

0
@

1
A 0 1 0

1 1 1

1 1 0

0
@

1
A 0 1 0

1 1 1

0 1 1

0
@

1
A 0 0 1

1 1 1

1 0 1

0
@

1
A 0 0 1

1 1 1

0 1 1

0
@

1
A

1 0 0

0 0 �1

0 1 1

0
@

1
A 1 0 0

0 0 �1

�1 �1 0

0
@

1
A 1 0 0

0 �1 0

0 1 1

0
@

1
A 1 0 0

0 �1 0

�1 0 �1

0
@

1
A 1 0 0

�1 0 �1

1 1 1

0
@

1
A 1 0 0

�1 �1 0

1 1 1

0
@

1
A 0 1 0

0 0 �1

1 0 1

0
@

1
A 0 1 0

0 0 �1

�1 �1 0

0
@

1
A

0 1 0

0 �1 �1

1 1 1

0
@

1
A 0 1 0

�1 �1 0

1 1 1

0
@

1
A 0 0 1

0 �1 �1

1 1 1

0
@

1
A 0 0 1

�1 0 �1

1 1 1

0
@

1
A 1 0 0

0 1 0

0 0 �1

0
@

1
A 1 0 0

0 1 0

1 0 1

0
@

1
A 1 0 0

0 1 0

0 �1 �1

0
@

1
A 1 0 0

0 1 0

1 1 1

0
@

1
A

1 0 0

0 0 1

0 �1 0

0
@

1
A 1 0 0

0 0 1

1 1 0

0
@

1
A 1 0 0

0 0 1

0 �1 �1

0
@

1
A 1 0 0

0 0 1

1 1 1

0
@

1
A 1 0 0

0 0 �1

�1 �1 �1

0
@

1
A 1 0 0

0 �1 0

�1 �1 �1

0
@

1
A 1 0 0

1 1 0

�1 �1 �1

0
@

1
A 1 0 0

1 0 1

�1 �1 �1

0
@

1
A

1 0 0

0 1 0

0 1 1

0
@

1
A 1 0 0

0 1 0

�1 0 �1

0
@

1
A 1 0 0

0 0 �1

0 �1 0

0
@

1
A 0 1 0

0 0 1

1 1 0

0
@

1
A 0 1 0

0 0 1

�1 0 �1

0
@

1
A 0 1 0

0 0 1

1 1 1

0
@

1
A 0 1 0

0 0 �1

�1 �1 �1

0
@

1
A 1 0 0

0 �1 0

1 1 1

0
@

1
A

0 1 0

1 1 0

�1 �1 �1

0
@

1
A 0 1 0

0 1 1

�1 �1 �1

0
@

1
A 1 0 0

0 0 1

0 1 1

0
@

1
A 1 0 0

0 0 1

�1 �1 0

0
@

1
A 0 1 0

0 0 1

1 0 1

0
@

1
A 0 1 0

0 0 1

�1 �1 0

0
@

1
A 0 1 0

0 0 �1

1 1 1

0
@

1
A 1 0 0

0 0 �1

1 1 1

0
@

1
A

0 0 1

1 0 1

�1 �1 �1

0
@

1
A 0 0 1

0 1 1

�1 �1 �1

0
@

1
A 0 0 1

�1 0 �1

�1 �1 �1

0
@

1
A 0 0 1

0 �1 �1

�1 �1 �1

0
@

1
A 0 1 0

�1 �1 0

�1 �1 �1

0
@

1
A 0 1 0

0 �1 �1

�1 �1 �1

0
@

1
A 1 0 0

�1 �1 0

�1 �1 �1

0
@

1
A 1 0 0

�1 0 �1

�1 �1 �1

0
@

1
A



any g 2 StðA3Þ and 3-by-3 symmetric matrix Sobs with

hdelS
obshT

del 2
~DDdel:

�RðS
obs½g�1�Þ � �RðS

obs½ðgt001Þ
�1
�Þ; ð48Þ

�RðS
obs
½ðgTþR Þ

�1
�Þ � �RðS

obs
½ðgTþR t001Þ

�1
�Þ

� �RðS
obs½ðgTþR t010Þ

�1
�Þ: ð49Þ

From Proposition 1, PRðS
obs½g�1�Þ and PRðS

obs½ðgTþR Þ
�1
�Þ are

prioritized over PRðS
obs½ðgt001Þ

�1
�Þ, PRðS

obs½ðgTþR t010Þ
�1
�Þ and

PRðS
obs½ðgTþR t001Þ

�1
�Þ if the most feasible solution is deter-

mined by the distance between the observed metric tensor and

its projection. This criterion was also used by Andrews &

Bernstein (1988).

Therefore, the algorithm in Table 7 uses only the matrices

belonging to the right cosets StðA3Þ and StðA3ÞT
þ
R . They are

given as the first 16 matrices in Table 6. We recommend the

use of all 64 matrices only when a very prudent search is

necessary.

5.2.4. Base-centred cells. For base-centred cells, the

following theorem is obtained:

Theorem 4. Let ~SSobs be an observed metric tensor of a lattice

with base-centred symmetry, and let ~SS be the true metric

tensor with regard to the same basis as ~SSobs. Under assumption

(A), if ~SSobs is Delaunay reduced in a broad sense, ~SS belongs to

the following union of linear subspaces of Vdel:

~VVB [
[

g02StðA3Þ

~VVð1ÞB;1;2½g0t010� [
[

g02StðA3 Þ;
i¼2;3

~VVð1ÞB;1;2½g0T
ðiÞ
B �23�; ð50Þ

where T
ð2Þ
B , T

ð3Þ
B are the matrices defined by equations (41) and

(42), respectively, and

�23 :¼
1 0 0

0 0 1

0 1 0

0
@

1
A: ð51Þ

The domain of equation (50) is decomposed into the unionS
g2CB

~VVð1ÞB;1;2½g
�1�, where CB constitutes the 69 matrices in

Table 8. As in the case of rhombohedral cells, we have the

following proposition:

Proposition 2. For a distance on Sym3ðRÞ provided by

equation (46) for some r> 0, the projection map

PB : Sym3ðRÞ �! ~VVð1ÞB;1;2 is defined by

s11 s12 s13

s12 s22 s23

s13 s23 s33

0
B@

1
CA 7!

a s12 d

s12 a d

d d s33

0
B@

1
CA;

a :¼
s11 þ s22

2
; d :¼

s13 þ s23

2
: ð52Þ

The distance of the displacement �BðSÞ :¼ distðS;PBðSÞÞ

satisfies the following inequalities for any g 2 StðA3Þ and

3-by-3 symmetric matrix Sobs with hdelS
obshT

del 2
~DDdel:

�BðS
obs½g�1�Þ � �BðS

obs½ðgt010Þ
�1
�Þ; ð53Þ

�BðS
obs
½ðgT

ð2Þ
B Þ
�1
�Þ � �BðS

obs
½ðgT

ð3Þ
B �23Þ

�1
�Þ; ð54Þ

�BðS
obs
½ðgT

ð3Þ
B Þ
�1
�Þ � �BðS

obs
½ðgT

ð2Þ
B �23Þ

�1
�Þ: ð55Þ

In the algorithm in Table 9, we propose the use of only

the matrices belonging to the right cosets StðA3Þ, StðA3ÞT
ð2Þ
B

and StðA3ÞT
ð3Þ
B , as a result of Proposition 2. They correspond to

the first 21 matrices in Table 8. In this case, the domain to

search for nearly base-centred cells equals ~VVB defined by

equation (33). As in the rhombohedral case, we recommend

the use of all 69 matrices only when a very prudent search is

necessary.

5.3. Algorithms for higher symmetries

After the centring type is determined, cells with higher

symmetries are obtained from solutions of lower symmetries

with the same centring type by basically following the same

method as that described in Table 3. According to the

symmetry, it is necessary to replace the set of used matrices

and the projection map Snew 7! S.

The sets of matrices used are listed in Table 10. Finally, the

numbers of matrices used for each Bravais type are summar-

ized in Table 11.

5.4. Computational efficiency of the new method

In Bravais-lattice determination, if the remaining condi-

tions are exactly the same, the computation time is considered

to be proportional to the number of matrices used in each

algorithm. Hence, computational efficiency is simply

measured by the number of matrices.

In our algorithm, 58 matrices are used in order to obtain

solutions for all the Bravais types.

With regard to the method of Andrews & Bernstein,

the number of lattice characters belonging to non-triclinic

Bravais lattices is 42. In addition, as proved in Appendix B,

when the metric tensor is near a face-centred lattice, it is

necessary to check more than 168 matrices in order to obtain

all nearly Buerger-reduced cells. Consequently, more than
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Table 7
Algorithm for rhombohedral cells.

(Input) Sobs: Delaunay-reduced metric tensor,
"> 0, distðS;TÞ: same as Table 3,

(Output) A: array of pairs of a change-of-basis matrix g and
S 2 VR satisfying distðS; Sobs½g�Þ<".

1: Prepare the array C0R of size Imax :¼ 16 presented in Table 6.
2: for i = 1 to Imax do
3: Compute Snew :¼ C0R½i�S

obsC0R½i�
T .

4: Set a :¼ 1
3 ðs11 þ s22 þ s33Þ and d :¼ 1

3 ðs12 þ s13 þ s23Þ,
using the ði; jÞ entry sij of Snew.

5: Set

S :¼
a d d

d a d

d d a

0
@

1
A:

6: if distðSnew; SÞ<", insert ðC0R½i�; SÞ in A.
7: end for



168� 42 ¼ 7056 matrices are required in the worst case. On

the other hand, in the best case, i.e. when only one matrix

among the 25 Gruber matrices gives a nearly Buerger-reduced

cell, 25þ 42 ¼ 67 matrices are used in total.

Therefore, it is concluded that the new algorithm enhances

efficiency up to about 7056=58 ’ 121:7 times, compared to the

existing method.

Another advantage of the new method is that its efficiency

is not affected by the overestimation of errors by users

because the number of matrices is not magnified by the

overestimation.

In the method of Andrews & Bernstein (1988), the number

of matrices generated by the recursive use of Gruber opera-

tions is uncertain.

In general, condition (A) is supposed to be true, at least for

correctly estimated errors in normal experimental data. In

addition, as explained in Appendix B, if the assumption (A0)

derived from assumption (A) is false, infinitely many matrices

are required for error-stable Bravais-lattice determination

theoretically. [(A0) An observed metric tensor Sobs is suffi-

ciently far from any 3-by-3 symmetric matrix that is not

positive definite.]

Although it is not discussed here, it seems to be very

plausible that (A) and (A0) become equivalent conditions,

depending on the distance function. Hence, it is natural that

(A) is required in Bravais-lattice determination.

6. Application to powder indexing solutions

6.1. Implementation in Conograph

Fig. 1 shows the position of the Bravais-lattice determina-

tion in the flowchart of the powder indexing software Cono-

graph.
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Table 8
Matrices to search for nearly base-centred cells.

The matrices are chosen so that ~VV�B;1;2½g
�1
1 � 6¼

~VV�B;1;2½g
�1
2 � holds for any g1 6¼ g2. Matrices in the first two rows and the first five in the third row are contained in C0B.

1 1 0

1 �1 0

0 0 1

0
@

1
A 1 0 1

1 0 �1

0 1 0

0
@

1
A 1 0 �1

1 0 1

0 1 1

0
@

1
A 1 �1 0

1 1 0

0 1 1

0
@

1
A 2 1 0

0 �1 0

0 0 1

0
@

1
A 2 1 0

0 �1 0

�1 �1 �1

0
@

1
A 2 0 1

0 0 �1

0 1 0

0
@

1
A 2 0 1

0 0 �1

�1 �1 �1

0
@

1
A

1 �1 �1

1 1 1

0 1 0

0
@

1
A 1 �1 �1

1 1 1

0 0 1

0
@

1
A 2 1 1

0 �1 �1

�1 0 �1

0
@

1
A 0 �1 �1

2 1 1

0 1 0

0
@

1
A 0 1 1

0 1 �1

1 0 0

0
@

1
A 1 2 0

�1 0 0

0 0 1

0
@

1
A 1 2 0

�1 0 0

�1 �1 �1

0
@

1
A 0 2 1

0 0 �1

1 0 0

0
@

1
A

�1 1 �1

1 1 1

1 0 0

0
@

1
A �1 0 �1

1 2 1

1 0 0

0
@

1
A 1 0 2

�1 0 0

0 1 0

0
@

1
A 0 1 2

0 �1 0

1 0 0

0
@

1
A �1 �1 0

1 1 2

1 0 0

0
@

1
A 1 1 0

1 �1 0

1 0 1

0
@

1
A 1 1 0

1 �1 0

0 �1 �1

0
@

1
A 1 0 1

1 0 �1

1 1 0

0
@

1
A

1 0 1

1 0 �1

0 �1 �1

0
@

1
A 1 0 �1

1 0 1

0 1 0

0
@

1
A 1 0 �1

1 0 1

�1 �1 �1

0
@

1
A 1 �1 0

1 1 0

0 0 1

0
@

1
A 1 �1 0

1 1 0

�1 �1 �1

0
@

1
A 1 1 1

1 �1 �1

0 0 �1

0
@

1
A 0 0 �1

2 0 1

0 �1 0

0
@

1
A 1 1 1

1 �1 �1

0 �1 0

0
@

1
A

0 0 �1

2 0 1

1 1 1

0
@

1
A 0 �1 0

2 1 0

0 0 �1

0
@

1
A 0 �1 0

2 1 0

1 1 1

0
@

1
A 2 1 1

0 �1 �1

0 1 0

0
@

1
A 2 1 1

0 �1 �1

0 0 1

0
@

1
A 0 �1 �1
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After candidates for the metric tensor of the crystal

primitive cell are enumerated by powder auto-indexing, they

are transformed into Delaunay-reduced metric tensors by the

Delaunay algorithm (Delaunay, 1933). The Buerger-reduced

cells are easily constructed from the Delaunay-reduced metric

tensors (Balashov & Ursell, 1957). Next, several figures of

merit representing the reliability of powder indexing solutions

are computed for each cell as a triclinic solution, and a part of

the solutions are removed owing to low figures of merit [for

example, de Wolff (1968) figure of merit M20 < 2:0]. Subse-

quently, Bravais-lattice determination is carried out.

Instead of a distance function and a threshold used in Tables

3–5, 7 and 9, Conograph judges if two metric tensors Sobs and S

are close using error propagation based on approximated

observation errors of peak positions as follows:

(1) Estimation of errors in metric tensors. In general, the

peak positions are acquired using a peak-search program;

hence, their errors are not obtained naturally. However,

because statistics are essentially required for error-stable

computation, the error (GErr) of a peak position is approxi-

mated in Conograph using the full width at half-maximum

(FWHM) of the peak by

GErr :¼
1

ð8 log 2Þ1=2
FWHM: ð56Þ

This formula equals the square root of the variance of the

Gaussian distribution with the same FWHM. Subsequently,

for powder patterns of angle dispersion, the q value of a peak

position 2� is computed as

q :¼
2

�
sin

2� þ�2�

2

� 	2

; ð57Þ

where � is the wavelength of X-rays, 2� is the diffraction angle

of the peak position and �2� is the zero-point shift. The

propagation error of q is defined using the first derivative

(linear approximation) by

Err½q� :¼ GErr�
dq

d2�
¼ GErr�

2q1=2

�
cos

2� þ�2�

2
: ð58Þ

In the auto-indexing algorithm of Conograph, the entries of

metric tensors S are obtained as a linear sum of q values.

Therefore, the propagation error of S is defined similarly and

computed from Err½q�.

(2) Function to measure the difference between two metric

tensors. In the algorithms in the tables, the entries of S and

Snew are defined as a linear sum of the entries of Sobs. The same

holds for the entries dsij of dS :¼ S� Snew. As a result, the

propagation error Err½dsij� of dsij is computed from that of Sobs.

In Conograph, the formula used to judge whether S and Snew

are close is given by

dsij � cErr½dsij� for all 1 � i � j � 3; ð59Þ

where c is the tolerance level explained in the next paragraph.
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Table 11
Number of matrices required for each symmetry.

Bravais type Number

Monoclinic (P), orthogonal (F, I), tetragonal (P, I) 3
Monoclinic (B) 21
Rhombohedral 16
Orthogonal (P, C), hexagonal, cubic (P, I, F) 1

Table 9
Algorithm for base-centred cells.

Note that output matrices in A are not transformed into Niggli-reduced form
yet, i.e. some of them do not satisfy 0 � �d � minfa=2; cg.

(Input) Sobs: Delaunay-reduced metric tensor of a lattice in real space,
"> 0, distðS;TÞ: same as Table 3,

(Output) A: array of pairs of an integer matrix g with hBg 2 GLð3;ZÞ
and S 2 VB satisfying distðS; Sobs½g�Þ<".

1: Prepare the array C0B of size Imax :¼ 21 presented in Table 6.
2: for i = 1 to Imax do
3: Compute Snew :¼ C0B½i�S

obsC0B½i�
T ,

4: Set

S :¼
s11 0 s13

0 s22 0

s13 0 s33

0
@

1
A;

using the ði; jÞ entry sij of Snew.
5: if distðSnew; SÞ<", insert ðC0B½i�; SÞ in A.
6: end for

Table 10
Matrices to obtain cells with higher symmetries.

Input cells Output cells Set of matrices

Monoclinic Orthorhombic I3

Monoclinic (P)† Hexagonal
1 0 0

0 0 1

0 1 0

0
@

1
A

Orthogonal Tetragonal I3;
1 0 0

0 0 1

0 1 0

0
@

1
A; 0 1 0

1 0 0

0 0 1

0
@

1
A

Orthogonal Cubic I3

† The principal axis is supposed to be the b axis.

Figure 1
Flowchart of Conograph.



(3) Tolerance level c. This parameter is used to set the scale

of errors of the peak positions. The errors are approximated as

c�GErr. Considering the error caused by zero-point shift,

the initial default value of c is set to 1 in Conograph. The test

in x6.2 is executed with this value.

6.2. Results

Conograph has been tested with a variety of powder-

diffraction patterns including all the Bravais types. In this

section, the results for powder-diffraction patterns in Table 12

are presented.

In every case, success of the Bravais-lattice determination

was confirmed using the correct solution of powder indexing.

The time taken to carry out the determination was about

1:0� 10�3 per metric tensor, as presented in Table 12.

In general, the determination is more time consuming when

the crystal has higher symmetry. This is attributed to the

increase in the number of Bravais lattices generated from a

metric tensor. For example, when the algorithm in Table 3 is

applied to an almost orthogonal (P) cell (i.e. s12, s13, s23 are

rather small), three monoclinic (P) cells are generated as

follows:

ðsijÞ 7!

s11 0 s13

0 s22 0

s13 0 s33

0
@

1
A; s11 0 s12

0 s33 0

s12 0 s22

0
@

1
A; s22 0 s23

0 s11 0

s23 0 s33

0
@

1
A:
ð60Þ

As another example, when the algorithm in Table 9 is applied

to a crystal lattice very close to a cubic (F) lattice, at least 11

monoclinic (B) cells are generated.

Unlike the method of Andrews & Bernstein, all the metric

tensors satisfying equation (59) are enumerated, even in such

a case. As a result, two cells having very close metric tensors

are sometimes generated. This policy was adopted for powder

indexing software. The process of extracting the best solutions

using figures of merit and removing duplicates is carried out

subsequently in Conograph.

7. Conclusion

A new Bravais-lattice determination algorithm was proposed,

and this algorithm proved to be error stable under a general

assumption that powder indexing solutions are considered

to always satisfy. By applying Minkowski reduction and

Delaunay reduction, the number of matrices used was reduced

considerably. As a result, the new algorithm enhanced

computational efficiency by more than 120 times, as compared

to the method of Andrews & Bernstein (1988). The new

algorithm was implemented in the powder auto-indexing

software Conograph.
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Table 12
Summary of test data.

Material Source Bravais type

Total time† (s)/number
of metric tensors‡
= average time† (s)

Silicon Spallation
neutron

Cubic (F) 1:44=1092 ¼ 1:31� 10�3

Strontium
iron oxide

Reactor
neutron

Tetragonal (I) 2:45=3134 ¼ 0:78� 10�3

Alumina Characteristic
X-rays

Rhombohedral 0:92=2249 ¼ 0:41� 10�3

Acrinol Characteristic
X-rays

Monoclinic (B) 3:92=7050 ¼ 0:56� 10�3

† The determination was carried out for every non-triclinic Bravais lattice, and the
solutions were transformed into the Niggli-reduced cells during this time. The test was
executed by parallel computing with eight hyper-threads using an Intel Core i7 CPU
(3.20 GHz). ‡ This equals the number of solutions obtained by auto-indexing. As
mentioned at the end of x6.2, solutions close to each other are generated in Bravais-
lattice determination, and not only in auto-indexing. Because Conograph selects the best
solutions and removes duplicates subsequently, the final solutions are much smaller than
these numbers.
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